અનુબદ્ધ સંકર સંખ્યા શોધો : $\frac{(3-2 i)(2+3 i)}{(1+2 i)(2-i)}$
We have, $\frac{(3-2 i)(2+3 i)}{(1+2 i)(2-i)}$
$=\frac{6+9 i-4 i+6}{2-i+4 i+2}=\frac{12+5 i}{4+3 i} \times \frac{4-3 i}{4-3 i} $
$=\frac{48-36 i+20 i+15}{16+9}=\frac{63-16 i}{25}=\frac{63}{25}-\frac{16}{25} i$
Therefore, conjugate of $\frac{(3-2 i)(2+3 i)}{(1+2 i)(2-i)}$ is $\frac{63}{25}+\frac{16}{25} i$.
બે સંકર સંખ્યાનો માનાંક એક હોય તો તેમના ગુણાકારનો માનાંક . . . . .
જો ${z_1}$ એ સંકર સંખ્યા છે કે જેમાં ( $|{z_1}| = 1$ )અને ${z_2}$ એ સંકર સંખ્યા છે, તો $\left| {\frac{{{z_1} - {z_2}}}{{1 - {z_1}{{\bar z}_2}}}} \right| = $
જો $z = x + iy$ હોય તો $|z - 5|$ = . . . .
જો $Arg(z)$ એ સંકર સંખ્યા $z$ નો મુખ્ય કોણાક દર્શાવે તો $Arg\left( { - i{e^{i\frac{\pi }{9}}}.{z^2}} \right) + 2Arg\left( {2i{e^{-i\frac{\pi }{{18}}}}.\overline z } \right)$ ની કિમત મેળવો
જો $\frac{3+i \sin \theta}{4-i \cos \theta}, \theta \in[0,2 \pi],$ એ વાસ્તવિક કિમંત હોય તો $\sin \theta+\mathrm{i} \cos \theta$ નો કોણાંક મેળવો.